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A mathematical model of convection, obtained by truncation from the two- 
dimensional Boussinesq equations, is shown to exhibit a bifurcation from symmetrical 
cells to tilted non-symmetrical ones. A subsequent bifurcation leads to time- 
dependent flow with similarly tilted transient plumes and a large-scale Lagrangian 
mean flow. This change of symmetry is similar to that occurring with the advent of 
a large-scale flow and transient tilted plumes seen in laboratory experiments on 
turbulent convection at high Rayleigh number. Though not intended as a description 
of turbulent convection, the model does bring out in a theoretically tractable context 
the possibility of the spontaneous change of symmetry suggested by the experiments. 

Further bifurcations of the model lead to stable chaotic phenomena as well. These 
are numerically found to occur in association with heteroclinic orbits. Some 
mathematical results clarifying this association are also presented. 

1. Introduction and summary 
In a horizontal layer of fluid with fixed higher temperature on the bottom 

boundary and fixed lower temperature on the top boundary, cellular convective flow 
occurs for a certain range of Rayleigh number R and Prandtl number u. The 
horizontal scale of these cells is comparable with the depth of the layer. At 
successively larger values of R, a number of transitions in the flow pattern as well 
as in the heat flux are observed (Malkus 1954; Willis & DeardorfF 1967a, b ;  
Krishnamurti 1970a, b ;  Busse & Whitehead 1971). Most of these changes are within 
the regime of cellular flows. Recent laboratory studies (Krishnamurti & Howard 
1981) showed a further transition which leads to a very different scale of motion and 
very different transport properties. A t  u = 7 and R = lo8, the flow consists of 
transient plumes or bubbles of hot fluid rising from the bottom boundary and cold 
ones sinking from the top boundary. (x, t)-photographs (where x is a horizontal 
coordinate, t is the time) of the flow revealed that there is nothing that could be 
identified as a cell boundary, unlike the case at lower R and/or higher u. When R 
was made greater than approximately 2 x lo8, these plumes began to drift in one 
direction along the bottom layer, and in the opposite direction near the top of the 
layer. Thus the flow in this regime has apparently two distinct scales of motion. The 
smaller-scale flow (the transient plumes or bubbles) has a horizontal lengthscale 
comparable with the layer depth d ,  while the large-scale flow (the apparent 
horizontal drift which is oppositely directed near the bottom and the top of the layer) 
has a lengthscale that is the layer width L. In those experiments L was typically an 
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order of magnitude larger than d. In  further experiments the fluid occupied a 
cylindrical annular region and the plumes were observed to drift all in one direction 
along the bottom, and all in the opposite direction along the top. 

When this apparent large-scale flow occurred, we observed that nearly all these 
plumes were uniformly tilted away from the vertical in such a way that the 
momentum transport by the Reynolds stress UW would tend to maintain this 
large-scale flow. Here u is the horizontal velocity, w the vertical velocity. The 
large-scale horizontal velocity U ( z )  was inferred from the apparent speed of horizontal 
motion of the plumes. These plumes were visualized by means of tracers which show 
regions of change of shear in the fluid velocity. Thus from the observed movement 
of the location of strong shear zones, one could not conclude that mass was moving 
with the same velocity. In experiments to be described in a forthcoming paper, the 
actual velocity of neutrally buoyant microscopic tracer particles in a cylindrical 
annulus of turbulent convecting fluid was measured and the existence of an Eulerian 
velocity U ( z ) ,  non-zero after horizontal average around the annulus, was demonstra- 
ted. Furthermore, by the introduction of dyed fluid, we observed that there was a 
net horizontal Lagrangian velocity also. From these velocity measurements we found 
that the Reynolds-stress divergence very nearly balances the viscous force on the 
large-scale flow U(z ) .  The main results of this experiment are: (i) There does exist a 
non-zero horizontally averaged velocity U ( z ) ,  correctly inferred by the apparent drift 
of the plumes. (ii) The direction of momentum transport by the Reynolds stress is 
up the gradient of U. The Reynolds stress balances the viscous force on the large-scale 
flow. 

With the onset of this large-scale horizontal flow, the largest scale of motion has 
increased from one comparable with the layer depth to one comparable with the layer 
width. The onset has the semblance of an instability; it seems to set in at a certain 
Rayleigh number, and there is associated with it a change in the symmetry of the 
flow. 

In  $2 a mathematical model of this flow is presented. It was proposed in order to 
test the possibility that a large-scale shearing flow might occur as a result of an 
instability of cellular flow. To this end the three Fourier components that lead to the 
Lorenz equations (Lorenz 1963) were augmented with three additional components, 
leading to a sixth-order system. The main results of a study of the bifurcations of 
the resulting sixth-order system are that : 

(i) After the second bifurcation, steady tilted cells are the stable flow. This 
symmetry change is like that observed in the laboratory. While steady tilted cells 
are not observed in a convecting layer of fluid, they have been seen in Hele-Shaw 
cell convection. 

(ii) After the third bifurcation, stable limit cycles are found for a range of R and 
CT with the same symmetry as in (i). The flow and thermal structure can be described 
as hot transient plumes that form periodically and tilt as they rise from below, and 
cold ones that sink from above with the same angle of tilt. In this range, there is a 
net Lagrangian transport of mass, in one horizontal direction near the top of the 
layer, and in the opposite direction near the bottom. Although this very limited 
two-dimensional model cannot at all simulate the experiments, nevertheless the 
tilting transient plumes and the Lagrangian transport are qualitatively similar to the 
laboratoil. obser>-ations. 

(iii) Within this range of R where stable limit cycles are found, there are narrow 
sub-ranges of aperiodic flows. The occurrence of this chaotic behaviour is shown to 
be related to the existence of heteroclinic orbit pairs. 
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2. The mathematical model 
By truncating a Fourier representation of the stream function and temperature 

field, we obtain a set of equations governing the amplitudes of the Fourier modes. 
The three components that give rise to the Lorenz equations have here been 
augmented by three more, in particular so that in the stream function one mode is 
included that is independent of the horizontal coordinate x. Such a mode has not been 
included in previous studies (e.g. Curry 1978); without the observation that a 
large-scale flow can occur, there would be little reason to do so. The bifurcations of 
the resulting sixth-order system are studied. The main purpose was to see if, in such 
a simplified but manageable system, a large-scale circulation could arise spontaneously 
as an instability on cellular convection. The relationship between the bifurcations of 
the truncated model equations and of the Boussinesq equations is yet to be 
established. 

The dimensionless vorticity equation and the heat equation, in the Boussinesq 
approximation, are 

(1) 
a ao a(ul,vv) 
at ax a(x,z) 
- V Y =  aV4Y+u-+ 

where Y is the stream function, aY/ax = -w, aY/az = u,  and 8 is the negative 
temperature perturbation. The Rayleigh number R and the Prandtl number u are 
defined by 

P V 
u = - 

KV K ’  
R = - ATd3,  

where g is the acceleration due to gravity, a the thermal expansion coefficient, K the 
thermal diffusivity, v the kinematic viscosity, nd the layer depth, and AT the imposed 
temperature difference between the bottom and top boundaries of the layer. These 
equations together with the boundary conditions 0 = Y = V 2 Y  = 0 on z = 0, R are 
invariant under x-translations. The only solutions also invariant under all such 
translations (i.e. independent of x) satisfy 

a a 4 ~  ao 
-Yzz=a-,  -=oz,  at az4 at 

which, with the boundary conditions, imply that 0 and Y+O as t + m .  Any 
instability of the basic state of conduction must thus involve the breaking of the 
symmetry implied by invariance under x-translations. One may reasonably expect 
that most solutions of interest will nevertheless be invariant under some discrete 
subgroup of the translations, and in accordance with tradition we shall consider only 
solutions which are periodic in x with wavenumber a, i.e. invariant under translations 
through 2 x 1 ~ .  Such solutions will be represented, with regard to their x-dependence, 
by Fourier series in sin nax and cos nax. Because of the structure of the equations 
and boundary conditions it is also convenient to represent the z-dependence of 8 and 
Y by Fourier sine series; in view of the boundary conditions at  z = 0 and x the Fourier 
serir:s of z-derivatives up to the fourth are correctly given by formal term-by-term 
differentiation of the series. 

Now the equations and boundary conditions are also invariant under the 
transformation 

R :  Z + R - Z ,  0-+-8, Y+- Y,  
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i.e. reflection in the mid-plane z = $z and reversal of temperatures and vertical (but 
not horizontal) velocities; and they are invariant under 

T :  x+x+n/a ,  

an x-translation by half a wavelength. Some, but not all, of the x-periodic solutions 
are invariant under the composition T R  ( = RT) of these. For example the steady 
cellular convection which sets in a t  the critical Rayleigh number has alternating 
clockwise and counterclockwise rotating cells, with hot rising and cold descending 
regions - with a suitable choice of x-origin they are represented fairly well by 
functions of the form 

(3) 
Y = A sin ax sin z, 

8 = D cosax sin z+ E sin 2 2 . )  

The transformation R reverses the direction of rotation of the cells and interchanges 
hot and cold perturbations but since the cells are symmetrical, following R by T 
restores the original situation. Because the infinitesimal solution a t  the critical 
Rayleigh number possesses this R T  symmetry i t  is natural to restrict attention to 
such solutions in studying finite-amplitude cellular convection (in two dimensions), 
and this is normally done. This symmetry is also assumed in the truncation which 
leads to  the Lorenz model - it  uses just those terms written in (3). However the kind 
of large-scale flow with which we are concerned in this paper does not possess this 
RT invariance. We shall present a model, based on free-free two-dimensional 
convection and so analogous to  the Lorenz model, which will illustrate the possibility 
of spontaneous breaking of the RT symmetry. Such a model must not of course have 
this symmetry built in from the start, and the form we shall use is 

Y = A sinax s inz+B sinz+C cosax s i n k ,  1 
8 = D COSO~X sin Z+ E sin%+ F sinaz sin 22.1 

Note that the effect of RT on this is to  reverse the signs of B, C and F but not those 
of the ‘Lorenz variables’ A ,  D and E.  The effect of R alone is to reverse the signs 
of A ,  B and D and not C, E and F .  Those functions of the form (4) which are invariant 
under RT are exactly those with B = C = F = 0. 

The form (4) appears to be the simplest that  makes some sense as a truncation of 
the Boussinesq equations and allows the possibility for breaking the RT symmetry. 
The B-term allows the possibility of a ‘large-scale flow’ - a horizontal shear flow 
independent of x. If both A and B are present, their interaction through the Jacobian 
in the vorticity equation requires the presence of the C-term, and it in turn requires 
through the temperature equation that F be present. Of course the Boussinesq 
equations do not really have solutions with only the terms in (4). All sorts of higher 
harmonics would be generated too, and our truncated model is open to the usual 
doubts about the relevance of such truncations to the partial differential equations 
they purport to  ‘solve’. This model does however accurately reflect some important 
symmetry properties of the Boussinesq equations ( 1 )  and (2). Certainly not all of their 
solutions have the RT symmetry though there is an ‘ invariant submanifold ’ of them 
that do. Whether or not (at sufficiently high R )  there are attractors off this manifold, 
as does indeed happen in the model, we unfortunately do not know. 

Substituting (4) into (2) and (3) and truncating leads to the following set of 
equations governing the time evolution of the coefficients A ,  B, C, D,  E ,  F :  

1. 

(4) 
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B+crB+iaAC = 0, ( 6 )  

acr a3 
C+cr(4+a2) c+- (4+a2)  F+2(4+a2)  AB = 0, (7) 

B+ (1 +a2) D -  RaA +aAE++ BF = 0, (8) 

&+4E-*aAD = 0, 

~ + ( 4 + a 2 ) F + R a C - + a B D  = 0. 

Some features of these equations are : 
(i) The Lorenz model, consisting of the three components with coefficients A ,  D, 

E is recovered when we set B = C = F = 0 in these equations. 
(ii) If R < R,, (defined below), all trajectories in the phase space starting at points 

outside a certain finite region eventually enter and remain in this region so that the 
coordinates of the phase point are bounded as t +  a. 

RC2 = (4  + a2)3/a2 is the critical Rayleigh number for instability of the conduction 
state to the second vertical mode. Equations (5)-(10) are readily seen to have 
A = B = D = E = 0 as an invariant manifold, on which the equations in C and Fare  
exactly linear, and unstable for R > Re,. Thus there are trajectories going to infinity 
in this case. This is no doubt an artifact of the truncation - if only C and F are 
present, the model is linearly like the Lorenz model for the half-height, but does not 
contain the sin(4z) term in the temperature field which would nonlinearly be needed. 
For R < R,, the boundedness of trajectories as t+m can be demonstrated by 
showing that the quantity 

R 
Q = [+( 1 +a*) A2 + B2++ (4+a2)  C2] +;D2+ (E-2R),  ++P 

is always decreasing when it is large. From (5)-( 10) one h d s  that 

dQ 
- = -R[(1+a2)2A2+2B2]-(l+a2)D2-4(E-2R)2 
dt 

-4E2+ 16R2-(4+a2) 1 - - ( (;33 
x 

<-2Min{a,l}Min 

so Q is decreasing if it exceeds 8R2/(Min {a, 1) Min { (4+a2)  (1 - (R/R,,)i), 1)). In this 
paper we shall be concerned only with R < R,,. The minimum value of R,, is 108, 
and it occurs at a2 = 2. 

(iii) Since the divergence of the velocity in phase space is 

aA aS aO aD a@ aP -+-+-+-+-+- = - 2 4 3  + a,) - (9 + 2aZ), aA aB aC aD aE aF 
the density of phase points increases according to 

1 dP 
P dt 
-- = 2cr(3+a2)+(9+2a2) 

(which is equal to 19 for cr = 1, a = 1). 
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2.1. Critical points and attractors 

The overall picture with respect to critical points and attractors, for different ranges 
of R,  is indicated schematically in figure 1. In this figure, two components A and C 
are plotted against R. The curves of critical points are indicated by heavy solid lines 
where they are attracting, and by broken lines otherwise. 

O < R < R ,  

The conduction state 0, with A = B = C = D = E = F = 0 is a global attractor, as 
with the Boussinesq equations, below the critical Rayleigh number R, = (1 +a2)3/a2. 
All six eigenvalues of the linearization about the origin are real and negative up to 
R = R,, where one real eigenvalue passes through zero. 

R, < R < R* 

range. There are two solutions with B = C = F = 0 and 
Steady symmetric cells (invariant under RT transformation) are stable in this 

2 4 2  (1 +a2) 
D = f  ( R  - R,)4 a 
E = R-R, .  

These are labelled L+ and L-  since they lie in the Lorenz manifold, B = C = F = 0. 
In figure 1 they are shown to lie in the ( A ,  R)-plane. The two branches correspond 
to the two possible directions of circulation within a cell. The linearization about L + 
(or L- )  leads to an eigenvalue problem that factors into two parts. One is in the 
Lorenz coordinates, the other in the coordinates B, C, F.  In the Lorenz coordinates, 
linear instability never occurs if u < 1 +4/(1 +a2). For example, for a = 1.2, the 
Lorenz solution in three dimensions is stable for u < 2.639. For u > 1 +4/(1 +a2) 
a Hopf bifurcation occurs at RIR, = R,/R, = a(u+b+3)/(u-b-l) ,  where 
b = 4/( 1 + a2), with linear oscillatory instability of L + above this R. The other factor 
has a real eigenvalue crossing through the origin as R increases through R*, where 

a2 (4 + a2) 

(1 + a2)2 
a2 (4 + a:); + 3a + 3 

R* (l+a) 
R, 
_ -  - 

a2(4+a2) 

(1 + a2)2 
c72 + 30- + 3 

This instability at R*, which leads out of the ‘Lorenz manifold’ B = C = F = 0 ,  
occursJirst if a > 0.5857 ( b  < 2.978) no matter what a may be. The Hopf bifurcation 
occurs below R* only if a < 0.5857, and then only for a limited range of values of 
u (see figure 2c) .  Table 1 and figure 2 ( a ,  b )  and 3 show critical values for other a 
and a. The stationary bifurcation at R = R* is supercritical (unlike the typical case 
for the Hopf bifurcation a t  R E ) .  

R * < R ~  

Steady tilted cells (not invariant under RT transformation) are stable in this 
range. To determine the tilted-cell critical points it is necessary to solve the six 
quadratic equations obtained by setting A = . . . = P = 0 in (5)-(10). Among the 
solutions are of course the other critical points L+ , L- and 0.  In fact it is easy to 
show from these equations that if A = 0 then all the other variables must be zero 
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FIGURE 1.  Bifurcation diagram. The amplitudes A and C vs. Rayleigh number R .  

R, u =0.1 u =  1.0 u = 10.0 

R 10.08804 10.088 04 10.08804 
R* 10.32695 22.886 06 86.02088 
R 11.215 38.802 89.179 

TABLE 1 .  Critical Rayleigh numbers for the onset of steady convection R,, for the onset of steady 
tilted-cell convection R*, and for the onset of oscillatory convection 8. All are for a = 1.2. 

too, unless R = Rc, = (4+a2)3/a2 .  At this special value of R (the second-mode linear 
instability of the origin, which is still retained by the present truncation though its 
nonlinear extension is inadequately represented) there is a line of critical points 
which may be parameterized by C, and is given by F = -[(4+a2)2/a] C with 
A = B = D = E = 0. These occur only at  R,, and will not be considered further, 
though their analogues in a higher truncation might well be of significance. If A # 0 
but C = 0 it is easily seen that B = F = 0, and we get the family of steady 
symmetrical cells given above as L+ and L- in terms of R. They may also 
conveniently be parameterized by A in the form 

-47 
(1 + 

a 
D =  

E = Q(1+a2)2A2, 

R = R,+Q(1+a2)2A2.  

the two signs of A for a given A2 giving L+ and L-  for the common value of R. 
Finally if both A and C are not zero, one can show from (6), ( 5 ) ,  (9) and (7) that 
B, D, E and F must be given in terms of A and C by 

3a 
4a 

B = -- AG, 

- (4+a2) ,  3a3 
a 8a2 

F =  C+- A2C.  
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FIGURE 2. (a) Marginal stability diagram for onset of steady tilted cells, and oscillatory flow at 
u = 1.0. (a) The critical Rayleigh number R* for onset of tilted cells as it varies with Prandtl 
number u. (c) Conditions on u and a such that the tilted-cell instability occurs at lower R than the 
Hopf bifurcation of the Lorenz critical point. 
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FIQURE 3. R* us. a for various u. 

The remaining two equations (8) and (10) can each then be solved for R in terms of 
A2 and C2 ; by eliminating R between them we obtain a relationship between A2 and 
G2 that can always be solved for A2 in terms of P, namely 

4 + a2) 3( 1 + (1 + a,), 27a2 3a2(3 + a2)) 
[3a \az 8a +-+(s+ 8 64a2 

[( 1 + a2) (3  + a,) + (r (4 + a2)2] c2. (1 1) 
3 

= Rz-Rc--  
8a2 

This can be used to eliminate A2 in one of the equations for R, thereby obtaining 
R in terms of C2. A is likewise determined in terms of C2, except for sign, by this 
relation, and then the above equations for B, D ,  E and F give the remaining 
components in terms of C and the sign of A .  Because R is determined by c2 and there 
are two independent ambiguous signs in going from c2 to C and A ,  there are four 
critical points for each value of R that occurs. c2 is limited to the range that makes the 
right-hand side of (1 1) positive, and i t  is easy to show that the corresponding range 
of R is from R, to R,. In figure 1, the four tilted-cell critical points are labelled 
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TC + + , TC + - , TC- + , TC- - . The first sign refers to  the Lorenz branch, the 
second to the two possible angles of tilt of the cell. 

An example of streamlines of these steady tilted cells is shown in figure 4(a). The 
horizontal average of the horizontal velocity component is non-zero. Yet it is clear 
from the streamlines in the figure that a fluid parcel in one cell remains forever in 
that cell. There is an Eulerian, but not a Lagrangian average F. 

Although steady convection with all cells tilted in one direction is not observed in 
laboratory fluid layers, it is observed in a Hele-Shaw cell. Although this flow, an 
example of which is seen in figure 4 ( b ) ,  is governed by different equations it is 
interesting to  see that some cellular convection actually does undergo this symmetry- 
breaking transition. 

The steady tilted cells become unstable at R = 8, where there is a supercritical 
Hopf bifurcation as a complex-conj ugate pair of eigenvalues crosses the imaginary 
axis and acquires a positive real part. For u = 1 and a = 1.2, this occurs at 
R = 38.802. Table 1 and figure 2 (a)  show critical values for other a and u. 

R > R  

With the instability of the tilted cell a t  R a stable limit cycle grows out of each 
of the four critical points TC + + , TC + - , TC - + , and TC - - . These are indicated 
schematically in figure 1. Solutions were obtained by numerically integrating (5)-( 10) 
in time using a fourth-order Rung-Kutta method. Stable periodic solutions were 
found over much of the following ranges of R : 

11.215 < R < 120 foru = 0.1, 

38.802 < R < 140 for u = 1.0, 

89.179 < R < 130 foru = 10. 

We first describe the solutions found a t  R just greater than w. These are periodic 
with period determined very nearly by the imaginary part of the unstable eigenvalue. 
For an initial condition taken near TC + + , for example, the values of A ,  B,  . . . , 
F obtained a t  each time step were plotted on various projections. Some examples of 
plots of the orbit on an A 4  projection will be shown. At R slightly in excess of 8, 
this is a simple closed curve around TC + + . I n  figure 5 ,  the curve labelled ( 1 )  is the 
projected orbit for u = 1.0, a = 1.2. R = 38.9; the curve labelled (2) is for R = 42.5. 
From the values of A ,  ..., F the temperature and stream function can be 
constructed. One example of the temperature field a t  times equally spaced within one 
period, is shown in figure 6. A hot plume or bubble is seen to form in the lower part 
of the region, rise and tilt from lower left to upper right. Later, a cold plume forms 
in the upper part, sinks and tilts from upper right to lower left. It also shows a 
leftward-propagating wave in the isotherms near the bottom of the layer and a 
rightward-propagating wave near the top of the layer. Similar orbits were found for 
u = 0.1 and u = 10.0, for R slightly in excess of 8. 

The periods of the stable limit cycles are plotted against R in figure 7 (a) for u = 0.1, 
7 ( b )  for cr = 1.0, and 7(c)  for u = 10. With the exception of the five circled points 
in figure 7 (c) all other points represent stable periodic solutions; the many unstable 
ones that were computed have not been included on these plots. 

These figures show narrow Rayleigh-number ranges in which the period increases 
rapidly with R. Figure 7 ( b )  for = 1.0, in particular, has several such ‘spikes’ 
separating broad ranges of nearly constant period. These spikes occur near R = 44.5, 
51, 91, 95, 115. We will now describe the behaviour of the flow near these spikes. 
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FIGURE 4. (a) Streamlines showing steady tilted cellular flow that occurs after the second 
bifurcation. u = 5.0, a2 = 0.5, R = 143. ( b )  Steady tilted cellular flow in a Hele-Shaw cell, forced 
only by evaporative cooling of the top of the fluid, which was freon 113, 7 cm deep, 75 cm wide, 
0.1 cm thick (in the direction normal to the page). 
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FIQURE 5. Projections of periodic orbits in phase space onto the ( A ,  C)-plane. B = 1 ,  a = 1.2; 
curve ( 1 )  R = 38.9; curve (2) R = 42.5; curve (3) R = 44.601. 

R > B,a = 1.0 

Approaching R = 44.5 from lower values of R ,  the simple orbit described above 
undergoes period doubling. The doubled period is stable for a certain range of R until 
one eigenvalue of the Poincar6 map becomes - 1. Beyond this point period 4 is stable 
for a certain range of R until i t  also goes through a period-doubling bifurcation and 
period 8 becomes stable, and so on to period 2 n .  Approaching R = 44.5 from higher 
values of R there is another period-doubling sequence for decreasing R. Between 
these two sequences is a range of R where the flow was chaotic and no stable periodic 
solutions were found. 

At R x 45, as well as a t  R x 44, there was a strong dependence upon the initial 
condition and multiple stable solutions a t  the same value of R were found. The 
hysteresis curve for R x 45 is shown in figure 8. The arrows indicate that the solution 
a t  the value of R at the tip of the arrow was obtained using as the initial condition 
the solution for R at the tail end of the arrow. 

We will show below that there is a pair of heteroclinic solution curves making a 
closed ‘orbit’ at R x 44.5, and that associated with this is a chaotic invariant set. 

I n  the range 45 < R < 50, stable periodic solutions were found whose ( A ,  C)- 
projection is as shown in figure 5, curve (3). Instead of remaining near t h e  critical 
point TC+ + , the orbit now comes near TC- - as well as near L+ , L -  and 0. 

Behaviour similar to  that at R x 44.5 is found near R x 51. In  this case however, 
approaching R = 51 from below, the periodic solutions end with an eigenvalue of the 
Poincar6 map of + 1.0, the last periodic solution being at R = 50.214. Approaching 
from above, the eigenvalue passes through - 1 .O and there is again a period-doubling 
sequence for decreasing R.  The value of R, designated R,, at which the period 2n orbit 
has eigenvalue - 1.000~0.001 is shown in table 2. The orbit of period 2n is stable 
from the point where i t  was formed (when the Poincar6 map of the period Zn-’ orbit 
had eigenvalue - 1) to the point where it has eigenvalue - 1 .  However only the latter 
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FIGURE 6. Temperature field at  successive time intervals within one oscillation period. u = 1.0, 
u = 1.2, R = 55. 

value, R,, was used in calculating 6, defined below. These multiple-period orbits were 
calculated by numerically constructing the Poincar6 map and finding fixed points by 
using a secant method. 

The ratio 6, = (Rn-,-R,)/(Rn-R,+,) took the following values: 

6, = 4.603, 6, = 4.7169, 6, = 4.50, 6, = 4.88. 
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For a large class of one-dimensional maps the ratio 6, approaches a universal 
constant 8, = 4.662.. .as n+oo (Feigenbaum 1978). Although we have a five- 
dimensional section (usually made at A = 0), i t  probably closely approximates a 
one-dimensional map because while one eigenvalue of the Poincare map is - 1 (at 
the bifurcation point), the other four are typically 10-6-10-8. The ratios cited above 
are all near 4.66, but do not look particularly convergent. However, accurate 
determination of these ratios for large n requires a great deal of attention t o  
numerical accuracy - even locating a fixed point is tricky, for at high n there are many 
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Attracting 
R Orbit chaos? 

Prandtl number = 1 

44.525 753076 3 Yes 
0 L +  

48.392829255 

48.438 009 0 

48.798777 115 

50.652 486478 

0 r l  L +  No 

No 

No 

Yes 

50.994 196841 2 Yes 

87.0785087032 Yes 
(Homoclinic orbit) 

TABLE 2. (Continued on next page) 
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R 

11.297 2 

13.1295 

15.5734027778 

18.153361 7021 

20.493 9 

Attracting 
Orbit chaos ! 

Prandtl number = 0.1 

e L +  

@ L +  

QL+ 

QL+ 

Yes 

TABLE 2. Rayleigh number at the heteroclinic orbit pairs. 

other fixed points close by, among which the secant method may jump around as 
R is varied in search of the bifurcation point. [The algorithm for finding fixed points 
is convergent at any fixed point, whether or not stable, provided that + 1 is not an 
eigenvalue there and that one starts close enough.] On the whole this appears to be 
an ' ordinary ' period-doubling sequence, apparently followed (as R decreases toward 
51) by small regions of stable periodic orbits with periods of the form (2k+ 1) 2n and 
ending with a period-3 orbit at about 51.193. This is a familiar pattern which has 
been carefully explored in various instances, and it did not seem necessary to refine 
the calculations enough to verify more convincingly the convergence of 8,. It should 
perhaps be mentioned that although we used a 60-bit computer, the accuracy of the 
numerical integrations was not sufficient to ensure that the R, are the true bifurcation 
points of the differential equation to as many decimal places as determined. But all 
integrations were done with the same algorithm and step size, so these numbers are 
probably correct for sorne differential equation closely approximating (5)-( 10). 

Between R = 51.193, where the period-3 orbit loses stability, and R = 50.214, 
where the simple periodic orbit ends with eigenvalue + 1 ,  we found mostly chaotic 
and very few periodic solutions. For example, at R = 50.23 the ( A ,  C)-projection of 
an orbit obtained by forward integration for a considerable time is shown in figure 
9 (a) .  The power spectrum for this case (figure 9 b )  shows a broad spectrum superim- 
posed on the peaks corresponding to the period of simple orbits. The coordinate B 
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FIGURE 10. Map of successive returns (B,,, us. B,) for (a) u = 0.1, R = 11.4; ( b )  u = 1.0, 

R = 50.23; (c) u = 10.0, R = 93.4. 
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at successive returns (B,,, m. B,)  is plotted in figure lO(b).  Resemblance, in parts 
of this figure, to a high-order one-dimensional map is noted, though it does not seem 
to be single-valued in terms of the coordinate B. If the intersection of the attractor 
on which this orbit (nearly) lies with the five-dimensional plane of section is indeed 
something like a curve, it is evidently a rather complicated one. (The successive-returns 
plot at  R = 44.55 appears similar to figure 10a.) 

As at R w 44.5, there is a pair of heteroclinic solution curves forming a closed 
‘orbit’ at  R w 51. 

In the range 51.286 < R < 85.7 simple periodic solutions are once more stable. The 
( A ,  C)-projection of the orbit in this range has once more changed shape; it no longer 
‘circles’ TC+ + and TC- -, and as R is increased i t  also moves further away from 
the origin. At  R x 85.695, these periodic orbits end with eigenvalue + 1, and the 
range 85.695 < R < 91.2 is full of chaotic flows. Once again, a heteroclinic orbit pair 
occurs at R x 86.4 ; there is also a homoclinic orbit from L + to itself at R x 87.1. 

There are further period-doubling sequences; at R x 91.179 there is period 
doubling for decreasing R. There are stable periodic orbits for 91.179 < R < 95.16. 
At R = 95.16, there is period doubling for increasing R, then most flows are chaotic 
from 95.16 to 114.5. There is period doubling at  114.5 for R decreasing, and stable 
periodic orbits for 114.5 < R < 125. 

R > a, u = 0.1 

The periods of stable limit cycles vs. R are shown in figure 7 (a).  Rayleigh numbers 
for occurrences of heteroclinic orbits are summarized in table 2. (These are clearly 
not all possible heteroclinic orbits.) The behaviour at u = 0.1, a = 1.2 is similar to 
that a t  u = 1,  a = 1.2. However, in this case, R = 11.215 is quickly followed by a 
heteroclinic orbit pair at R = 11.2972, and by many other such pairs soon thereafter. 
Some cases of period doubling were noted, but stable periodic orbits were generally 
difficult to find in the range 11.3 < R < 20. Presumably behaviour similar to that 
for u = 1.0 occurs but in a smaller range of R and i t  is harder to sort out, and 
bifurcation sequences are not shown in figure 7(a). The large periods near R = 11.3 
are not multiples of simple periodic: orbits but results of close approach to the origin. 
The plot of successive returns of B (B,,, vs. B,) at R = 11.4 is shown in figure 10 (a).  

R > a, u = 10. 

For cr = 10 the problem restricted to the Lorenz space (A ,  D ,  E )  itself undergoes 
bifurcations. For a = 1.2, the first homoclinic orbit through the origin occurs at 
R z 103 and a Hopf bifurcation occurs at R x 200. However, as seen from table 1, 
the instability of the tilted-cell critical point occurs below these values, at 
a = 89.179. The periods of the stable limit cycles are plotted against R in figure 7 (c). 
As with u = 1.0 and 0.1, the orbit in ( A ,  C)-projection at R just in excess of a is a 
simple closed curve near one of the tilted-cell critical points, say TC+ + . For these, 
the period is shown in the left-hand branch of figure 7(c). At R x 93 the Poincark 
map of these periodic orbits has a complex-conjugate pair of eigenvalues crossing the 
unit circle. In the range 93 < R < 98, we found chaotic solutions. A plot of successive 
return (B,,, 09. B,) in this range is shown in figure lO(c). For R >, 98 there are stable 
periodic orbits that approach the neighbourhood of both TC + + , and TC - + . These 
are stable up to R = 130 and are represented by the right-hand branch in figure 7 (c). 

2.2. Mass, momentum and heat jluxee 
Chaotic aspects of the flow, and their relationship to the existence of heteroclinic 
orbits will be discussed below. We now turn to some model results which are related 
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FIGURE 11.  Vertical momentum flux V.T. R (***). 

to observable physical quantities such as the heat and momentum flux, and the 
Lagrangian transport of maw, all of which were observed in the laboratory 
experiments that motivated this model study. Although we do not expect quantitative 
agreement between results of this low-order model and the laboratory experiments, 
certain trends in the results suggest further experiments. For u = 1.0, a = 1.2, the 
convective heat flux w8 (the bars represent time- and horizontal-average) and the 
vertical transport of horizontal momentum UW, evaluated at mid-depth, are plotted 
against R in figure 11. The momentum flux at mid-depth is UW = a x ,  the 
time-average of a m .  This is seen in figure 11 to be slowly varying, and remaining 
at approximately 5 for 45 < R < 85, except near the heteroclinic points (where the 
system spends most of its time near the conduction state). However, for R 2 90, the 
momentum flux very rapidly increases to values of around 15. 

For a particle on the boundary (z  = 0), the vertical velocity is zero and its position 
G(t) relative to its position at t = 0 may be determined by integrating k = u(x(t), A( t ) ,  
B(t) ,  C( t ) ) .  Examples of G(t)  1)s. t for u = 1.0 are seen in figure 12. For R just greater 
than 8, the particle makes hesitating non-monotonic progress towards x = - 00 ; as 
R is increased this becomes a more uniform drift. For u = 0.1 and R > 8 a particle 
on the boundary drifted smoothly toward x = - 00, but for u = 10, R > 8, there was 
no net drift, only an oscillation in time with the particle remaining within one 
horizontal wavelength of its original position. 

2.3. Heteroclinic orbits and chaos 
Some years ago, Silnikov (1965) investigated the following situation. Suppose we 
have an autonomous system of differential equations in three dimensions which has 
a critical point with one positive real eigenvalue and two complex ones with negative 
real part. Thus the unstable manifold of this critical point is one-dimensional, and 
consists of two orbits going out along the unstable eigenvector in opposite directions, 
while its stable manifold is two-dimensional, being transverse to the unstable 
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-201 - 25 0 7.99 15.97 23.96 r 31.94 39.93 47.91 55.90 

FIGURE 12. Horizontal coordinate G of a particle on the boundary, as it changes with time t .  
CT = 1.0, a = 1.2. 

eigenvector a t  the critical point. Suppose further that one of the orbits making up 
the unstable manifold returns again, as t++m, to the critical point, forming a 
homoclinic orbit. This situation is of course most unlikely-even if the unstable 
manifold were to return to the neighbourhood of the critical point, there is no 
particular reason that it should be among the ‘select few’ orbits (all on a surface in 
3 space) which form the stable manifold. On the other hand, if one is concerned not 
with a single system of differential equations but with a family of them depending 
on a parameter (like R in the model discussed above) it is no longer especially unlikely 
that a homoclinic orbit might occur at  certain exceptional values of the parameter. 
[A homoclinic orbit for a single system of equations is structurally unstable - even 
if it happens, it can be destroyed by an arbitrarily small perturbation of the 
equations. But its occurrence for one among a one-parameter family of systems is 
not (with some mild transversality condition) - a small perturbation of the equations 
can be compensated for by a slight adjustment of the parameter.] 

In this situation, Silnikov found that (with a certain mild transversality condition) 
provided the exponential growth rate of the unstable eigenvalue exceeded the 
exponential compression given by the magnitude of the real part of the complex 
eigenvalues then one could show the existence of infinitely many periodic orbits in 
every neighbourhood of the homoclinic one, and in fact of a whole chaotic set of orbits 
of the kind associated with a ‘horseshoe map.’ These include ‘transition orbits’ 
which approach different ones of the periodic orbits as t++ co and - co, as well as 
others which continually wander among neighbourhoods of many different periodic 
orbits and other irregular orbits - all this in every neighbourhood of the homoclinic 
orbit. 

Now in the case of our six-dimensional model we do not have quite the situation 
considered by Silnikov, but there is a certain analogy. At some special values of R 
there are heteroclinic orbits going from the Lorenz critical point to the conduction 
one. The former has one unstable real eigenvalue and two stable complex ones, 
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these corresponding to a part of the stable manifold lying in the Lorenz space 
B = C = F = 0 (at least for Prandtl number = l ) ,  and three other stable eigenvalues. 
The conduction critical point has an unstable real eigenvalue corresponding to an 
eigenvector in the Lorenz space, and five stable real ones - an ‘ordinary’ saddle 
point. There is.a second heteroclinic orbit, lying in the Lorenz space, which connects 
the conduction state back to the Lorenz critical point. In general, it is even less likely 
that there should be a heteroclinic pair like this, making together a degenerate closed 
‘orbit’, than that there should be a homoclinic orbit (usually one would have to 
adjust two parameters to make it happen). But in our case, because the Lorenz space 
is an invariant manifold containing the unstable manifold of the conduction critical 
point and because within this space the Lorenz critical point is completely stable, 
the return heteroclinic orbit always occurs (at least in the range of R of interest at  
cr = 1). Thus by adjustment of only one parameter (R) we can arrange for the 
heteroclinic pair. 

Silnikov has also extended his results (see Silnikov 1970) to arbitrary dimension, 
and we have been able to modify his arguments to obtain a similar result to his if 
there is a heteroclinic pair joining a real saddle point with one unstable eigenvalue 
to a spiral saddle point with two stable complex eigenvalues (whose real part is 
numerically less than that of other stable eigenvalues) and one unstable eigenvalue. 
Here the condition on the relative magnitudes of compression and expansion is 
replaced by a somewhat more complicated condition involving these magnitudes at  
both critical points. In  certain parameter ranges, our six-dimensional model is like 
this, but it has an additional feature which comes about because of the symmetry 
of the equations : when a heteroclinic orbit exists from L + to 0, there is also another 
one from L -  to 0,  and in fact both branches of the unstable manifolds of L +  go 
to 0 making four such heteroclinic orbits. Because of this there is a second 
chaos-producing mechanism somewhat analogous to that which produces the chaotic 
invariant set in the Lorenz model at high enough cr, and which is described for 
instance in Sparrow’s book (1982, appendix D). 

We have established a further modification of Silnikov’s result, which applies to 
a somewhat generalized form of the kind of problem suggested by our six-dimensional 
model, involving both of these chaos-producing mechanisms. A description of this 
(without its proof) is deferred to the Appendix, since even this requires some 
distracting terminological preparations. Loosely speaking, the result is that in 
circumstances similar to those in the model, the occurrence of heteroclinic pairs 
implies the existence of a complicated (but qualitatively describable) invariant set 
of uncountably many orbits, each staying close to the system of heteroclinic orbits 
for all time. 

The existence of a chaotic invariant set such as is given by results like Silnikov’s 
unfortunately does not imply the existence of a chaotic attractor. But if one suspects 
that the latter occur only in a relatively small part of parameter space, it would seem 
that a t  least a good place to start looking would be near regions where chaotic 
sets - attracting or not - are present, for instance near the occurrence of heteroclinic 
pairs. In fact our numerical experiments with the six-dimensional model have 
indicated a close association of the double heteroclinic values with the range of R in 
which we have found what appear to be chaotic attractors. We would suggest the 
search for such heteroclinic pairs, which is a much easier numerical problem than a 
comprehensive search through parameter space, as a useful pointer toward chaotic 
attract ors. 
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3. Conclusions 
This model, although obtained by severe truncation of two-dimensional free- 

boundary convection, still has some qualitative features resembling the laboratory 
observations that motivated this study, namely the spontaneous change of symmetry 
that leads to the large-scale flow. After the third bifurcation of the model, one also 
sees features such as transient tilted plumes and horizontal Lagrangian transport, 
reminiscent of the laboratory observations. 

For fairly general autonomous systems, we have shown that the occurrence of 
heteroclinic orbit pairs is associated with chaotic invariant sets. This has helped to 
clarify the occurrence of chaos in the six-dimensional model, and may be of use 
similarly in more general models including the Boussinesq equations. We do suggest 
that the Boussinesq equations may have something like this heteroclinic chaos, but 
do not wish to identify that with the observed turbulence at high Rayleigh numbers. 

It is a pleasure to acknowledge the support of this research by the Office of Naval 
Research, under Contract No. NOOO14-85-K-0071 NR 062-547. 

This is contribution number 233 of the Geophysical Fluid Dynamics Institute. 

Appendix 
The modification of Silnikov’s result alluded to above deals with a system 2’ = F(z) 

of n* 2 3 differential equations subject to four hypotheses, Hl-H4. The most 
significant of these, H1 and H2, are described below. The other two are rather 
technical ‘ transversality ’ hypotheses which are nearly always satisfied but are 
needed for completeness to exclude certain exceptional cases. Unfortunately, merely 
the statement of these hypotheses (especially H 3) requires a somewhat lengthy 
description of the technical aspects of the proof. H 4  is given below also (but without 
much explanation), since some of the background to i t  is needed to state the final 
result. H 3  is not needed for this - only for the proof - and its description is omitted. 
The details of this and of the proof will probably be published elsewhere; they are 
also in an extended version of this Appendix which is available from the authors. The 
description of the main hypotheses follows, and the result, called ‘Theorem A’, is 
given at the end. Some necessary terminology and notation is introduced in the 
course of the description. 

We use the letters s and u to stand for signs, + or -, and the letter S for a pair 
of signs, an ‘upper’ one S* and a ‘lower’ one S,. We shall for instance write L, for 
one of a pair of critical points L + and L - , and H ,  for one of four heteroclinic orbits 
HZ, H;,  HZ and H I .  The first two hypotheses about the system x‘ = F(x)  are: 

H 1. There are three critical points, 0, L+ and L -  , with the properties: 
( a )  The linearization at 0 has one simple positive eigenvalue A,, one negative one 

-p0, and all others have real parts < -p0. 
(b )  The linearization at L, has one simple positive eigenvalue A,, one conjugate 

pair of simple complex eigenvalues -,us & io, with ,us > 0 (and w, > O),  and all others 
have real parts < -,us. 

(c) There is a number p > 1 such that (A, A,) /@, p,) > p for both choices of s. 

H2. There are six heteroclinic orbits, H ,  from 0 to L, and H ,  from L,. to 0. (The 
H ,  form the two branches of the unstable manifold of 0, while the H,, for fixed S,, 
form the two branches of the unstable manifold of Ls*.) These leave their initial 
points tangent to the unstable eigenvectors there; we assume also that they approach 
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their terminal points tangent to the least stable eigenvector there, or to the plane of 
its real and imaginary parts if it  is complex. 

These are clearly motivated by the situation in our idealized model, but there is 
no restriction to six dimensions, nor has any analogue of the symmetry properties 
of the model been hypothesized, since what is really needed in our proof is the 
simultaneous occurrence of six heteroclinic orbits. However this is so unlikely to 
happen in general that probably the result is actually of interest only when special 
circumstances, like symmetry and the invariance of the Lorenz manifold in the 
model, make the occurrence of one heteroclinic orbit automatically produce others. 
Arbitrariness of the dimension n* is perhaps of more interest. Although we assume 
it to be finite, its essential irrelevance suggests that similar results can be expected 
if heteroclinic orbits can be found in similar problems of infinite dimension, like the 
real Boussinesq equations. Good numerical evidence for something of this sort (in a 
somewhat different context) has recently been given in Moore et al. (1983). 

The geometrical structure made of the three critical points and the six heteroclinic 
orbits is now surrounded by an ‘extended neighbourhood’ N made of small ‘balls’ 
about the critical points, connected by thin ‘tubes’ about the heteroclinic orbits. 
Although most solutions of the differential equations whose orbits intersect N leave 
it for large enough Itl, Theorem A asserts the existence of many which stay in N for 
all t .  The qualitative description of these is made by associating them with certain 
sequences of ‘symbols’ {Z,: - m < k < m}, in which each Z, is a quadruplet of signs 
and an integer: Zk = (Sk, s,, uk, n,). Not all such sequences are relevant here; to 
describe those which are we need a little more terminology. 

The heteroclinic orbit H ,  goes from L,. to 0, and is the orbit of a particular solution 
xs of the system. (For each S this solution is unique up to a translation in t . )  We 
may choose this solution so that x$ - S* exp (As* t )  e,. as t -+- 00, where e,. is a (real) 
eigenvector of the linearization at L,. corresponding to the eigenvalue As,. As t + + 00 

this solution approaches 0, and according to hypothesis H 2  does so tangent to an 
eigenvector el corresponding to the eigenvalue -po of the linearization at 0. Thus 
we have x$ - -Ks S* exp ( -po t )  el for t++ 00, the (non-zero) constant Ks being 
thereby defined. 

Similarly we may select solutions x, whose orbits are the H,. Now linearize the 
system about the solutions x,, getting 5‘ = M,(t)f ,  say, where M ,  = F!(z,(t)). Since 
x,+O for t+- m, M,(t)  approaches (exponentially) the matrix of the linearization 
a t  0, as t+-00. (Likewise it approaches the matrix of the linearization at L, as 
t -+ + 00 .) We may thus choose a basis for the solutions of 5‘ = M, f which has as first 
element a solution - s exp ( -po t )  el as t+- m and has its other elements 
asymptotically orthogonal to l , ,  the left eigenvector of the linearization a t  0 
corresponding to the eigenvalue -po, as t + -  00. Alternatively we may choose a basis 
which has as first element a solution +,1 - exp (A, t )  e,  as t++ 00, where e, is the 
eigenvector of the linearization at L, corresponding to eigenvalue A,, and the other 
elements are asymptotically orthogonal to the corresponding left eigenvector 1,. The 
solution #,1 is some linear combination of the elements of this second basis, and we 
shall write qsl for the coefficient of $,, in this. It is possible that qsl is zero, but in 
general this is not the case; one of the transversality hypotheses is: 

H4. qsl # 0. 

Now we call a sequence of symbols {& = (s,, s,, u,, n,)} admissible if 
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where p > 1 is the number mentioned in H 1 ( c )  and no is some fixed integer. There 
is obviously an uncountable infinity of such admissible sequences - for instance if 
p = 10/9 and no = 9 each of the nk can be chosen as 100 or 101, arbitrarily, and the 
last condition will always be satisfied. Since there are four signs and only two sign 
conditions, at  each stage there are four admissible sign choices. Even if a sign sequence 
is fixed in advance, we still have as many of these (100 101) sequences as there are 
real numbers. 

THEOREM A. For an autonomous system of n* 2 3 differential equations satisfying the 
hypotheses Hl-H4 and for any extended neighbourhood N of its critical pointe and 
heteroclinic orbits there is an no such that to every admissible symbol sequence there 
corresponds an orbit which lies in N for all t .  Symbol sequences which are not translates 
of each other correspond to different orbits. 

These orbits may be thought of as consisting of a succession of ‘excursions’ out 
from the neighbourhood of 0 to a neighbourhood of L, along a path close to H,,  
returning close to H,. The symbol sequence gives a qualitative description of the 
orbit, the signs describing the switching between different excursion paths, and the 
integers nk approximately measuring the lengths of time spent in the neighbourhoods 
of the critical points L,. 

One of the referees has called to our attention a recent paper, Tresser (1984). This 
interesting article gives a presentation and some generalization of Silnikov’s theorems, 
and discusses some results on heteroclinic loops closely related to the one given here. 
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